Posts tagged publication
Strong effects of weak ac driving in short superconducting junctions
has been published in PRB couple of days ago.
URL: http://link.aps.org/doi/10.1103/PhysRevB.91.104522
DOI: 10.1103/PhysRevB.91.104522
You can find the preprint here.
Abstract:
We study a short superconducting junction subject to a dc and ac phase bias. The ac modulation changes the occupation of the Andreev bound states formed at the constriction by transitions between bound states and the continuum. In a short junction, the non-equilibrium Andreev bound state population may relax through processes that conserve parity of the occupation number on the same bound state and processes that do not conserve it. We argue that the parity conserving processes occur on a much faster time scale. In this case, even a weak driving may lead to a large deviation of the supercurrent from its equilibrium value. We show that this effect is accompanied by a quasiparticle current which may lead to a measurable charge imbalance in the vicinity of the junction. Furthermore, we study the time evolution of the supercurrent after switching off the ac drive. On a time scale where parity relaxation is negligible, the supercurrent relaxes to a stationary non-equilibrium state. Finally, we briefly outline the regime of ultraweak driving where the ac-induced processes occur on a time scale comparable to parity relaxation.
Renyi entropy in quantum engines
has been published in Physical Review B,
Phys. Rev. B 91, 104303 – Published 18 March 2015.
It has been submitted in August last year, the preprint is available here here.
We evaluate Renyi entropy flows from generic quantum heat engines (QHE) to a weakly-coupled probe environment kept in thermal equilibrium. We show that the flows are determined not only by heat flow but also by a quantum coherent flow that can be separately measured in experiment apart from the heat flow measurement. The same pertains to Shanon entropy flow. This appeals for a revision of the concept of entropy flows in quantum nonequlibrium thermodynamics.