Multi-terminal Josephson junctions as topological materials
if you ask me, is a splendid piece of research. I mentioned the submission earlier: now the preprint is available here.
Abstract:
Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to ≤3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide a straightforward realization of tunable topological materials in n−1 dimensions. For n≥4, the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the n−1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 2e^2/(πℏ).
1 comment