De meningen ge-uit door medewerkers en studenten van de TU Delft en de commentaren die zijn gegeven reflecteren niet perse de mening(en) van de TU Delft. De TU Delft is dan ook niet verantwoordelijk voor de inhoud van hetgeen op de TU Delft weblogs zichtbaar is. Wel vindt de TU Delft het belangrijk - en ook waarde toevoegend - dat medewerkers en studenten op deze, door de TU Delft gefaciliteerde, omgeving hun mening kunnen geven.

Weblog Yuli Nazarov

Education, research and other funny things

Nature Nanotechnology: how to engineer topology

The engineering efforts reported in March made their way to Nature Nanotechnology on Sep. 12,
The Ļ‰-SQUIPT as a tool to phase-engineer Josephson topological materials

E. Strambini, S. D’Ambrosio, F. Vischi, F. S. Bergeret, Yu. V. Nazarov & F. Giazotto

Nature Nanotechnology (2016) doi:10.1038/nnano.2016.157

Full text can be accessed via this link

PRL quasiparticles

The attempt to unveil quasiparticle mysteries has been finally published in PRL

Theoretical Model to Explain Excess of Quasiparticles in Superconductors
Anton Bespalov, Manuel Houzet, Julia S. Meyer, and Yuli V. Nazarov
Phys. Rev. Lett. 117, 117002 ā€“ Published 9 September 2016

ABSTRACT: Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow. This gives rise to the observed excess in the presence of a vanishingly weak non-equilibrium agent.


The Faculty of Applied Sciences, Department of Quantum Nanoscience at Delft University of Technology invites applications for a tenure-track assistant professor position in Experimental Physics. Consideration of applications for an associate or full professor level position may be given to exceptionally well-qualified individuals.

Candidates must be able to demonstrate the ability to develop a highly successful independent research program and to participate effectively in the teaching of the applied physics curriculum at both the undergraduate and graduate levels. Research areas of interest include, for example, optics and photonics, nanostructure science and technology, novel sensing methods, condensed-matter
physics, and materials physics. Direct experience in nanoscience is not required of applicants, but candidates should think about how they could integrate their research into a theme of nanoscience or nanotechnology. Prospective candidates who wish to pursue interdisciplinary research efforts are strongly encouraged to apply. Current research in the Quantum Nanoscience Department is active
across many fields, including nanophotonics, quantum optomechanics, quantum optics, quantum transport, mesoscopic physics, and condensed matter physics.
The successful applicant can expect a highly competitive start-up package for her/his research program. Considerable institutional resources are available at TU Delft that can strengthen this research program and support interdisciplinary and collaborative research ventures. Candidates will be appointed on a tenure track basis with the prospect of a tenured position based on a successful evaluation after 5 years.

TU Delft is an equal opportunity employer and is committed to increase the diversity of its faculty.

Information and application
For more information about this position please contact the head of the Quantum Nanoscience Department Prof. Dr. K. Kuipers at

To apply, candidates should send the following information to the above email address:
(1) cover letter
(2) curriculum vitae
(3) publication list
(4) description of research interests and plans (1 page summary + 6 page max detailed statement)
(5) short teaching vision
(6) the names of three people who could be contacted for a letter of reference
Applications submitted by December 1, 2016 will receive full consideration.

Supercurrents in chiral channels originate from upstream information transfer: a theoretical prediction

This is the title of (relatively) new arxiv submission, first with Xiao-Li Huang.
It can be found here.

It has been thought that the long chiral edge channels cannot support any supercurrent between the superconducting electrodes. We show theoretically that the supercurrent can be mediated by a non-local interaction that facilitates a long-distance information transfer in the direction opposite to electron flow. We compute the supercurrent for several interaction models, including that of an external circuit.

Nature news and views

Quite unexpectedly, I’ve published something in Nature, specifically in News ans Views:

Quantum physics: Destruction of discrete charge

Electric charge is quantized in units of the electron’s charge. An experiment explores the suppression of charge quantization caused by quantum fluctuations and supports a long-standing theory that explains this behaviour. See Letter p.58

Yuli V. Nazarov

Nature 536, 38ā€“39 (03 August 2016) | doi:10.1038/536038a

Full text can be seen here.

PhD and post-doc openings

In the framework of ERC Advanced Grand Higher-dimensional topological solids realized with multi-terminal superconducting junctions
(HITSUPERJU) I would like to announce

  1. 2 Ph.D. positions, duration 4 years, it is possible to start from 1-8-2016 while the preferable starting date is 1-12-2016
  2. 1 post-doc position, duration 2 years, starting date spring 2017.

Here you can find a short description of the project.

To apply, please send

  1. your CV,
  2. motivation letter with the references to the project content,
  3. the names of three referees,
  4. importantly, the results of the TEST

to my e-mail address

While the test is more appropriate for Ph.D. candidates, aspiring postdocs are also requested to make it.
I look forward to fruitful collaboration!

Survey AQM #1

Here are the results of the first survey of AQM course. It took place on Feb 26. There were 36 participants. Main numbers are as follows:
Mark lectures: 7.4 Mark PPS: 6.7 Overall mark: 7.3
Better than last year. Still lack of PPS appreciation.
Read more

Nature Communications

Another publication with Grenoble friends. The preprint is available for almost a year, it had a complex history of submissions and interactions with referees šŸ™ Anyway, it feels like my best paper so far.

Title: Multi-terminal Josephson junctions as topological matter
Authors: Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer & Yuli V. Nazarov
Ref: Nature Communications 7, Article number: 11167, doi:10.1038/ncomms11167

Abstract: Topological materials and their unusual transport properties are now at the focus of modern experimental and theoretical research. Their topological properties arise from the bandstructure determined by the atomic composition of a material and as such are difficult to tune and naturally restricted to ā‰¤3 dimensions. Here we demonstrate that n-terminal Josephson junctions with conventional superconductors may provide novel realizations of topology in nāˆ’1 dimensions, which have similarities, but also marked differences with existing 2D or 3D topological materials. For nā‰„4, the Andreev subgap spectrum of the junction can accommodate Weyl singularities in the space of the nāˆ’1 independent superconducting phases, which play the role of bandstructure quasimomenta. The presence of these Weyl singularities enables topological transitions that are manifested experimentally as changes of the quantized transconductance between two voltage-biased leads, the quantization unit being 4e2/h, where e is the electric charge and h is the Planck constant.

Density of states in gapped superconductors with pairing-potential impurities

This is the title of a recent publication with my Grenoble friends.
Phys. Rev. B 93, 104521 ā€“ Published 21 March 2016
Text at Arxive
We study the density of states in disordered s-wave superconductors with a small gap anisotropy. We consider disorder in the form of common nonmagnetic scatterers and pairing-potential impurities, which interact with electrons via an electric potential and a local distortion of the superconducting gap. Using quasiclassical Green functions, we determine the bound-state spectrum at a single impurity and the density of states at a finite concentration of impurities. We show that, if the gap is isotropic, an isolated impurity with suppressed pairing supports an infinite number of Andreev states. With growing impurity concentration, the energy-dependent density of states evolves from a sharp gap edge with an impurity band below it to a smeared BCS singularity in the so-called universal limit. Within one spin sector, pairing-potential impurities and weak spin-polarized magnetic impurities have essentially the same effect on the density of states. We note that, if a gap anisotropy is present, the density of states becomes sensitive to ordinary potential disorder, and the existence of Andreev states localized at pairing-potential impurities requires special conditions. An unusual feature related to the anisotropy is a nonmonotonic dependence of the gap edge smearing on impurity concentration.

ERC Advanced Research Grant

Wow, it looks I got one! I wrote about working on the proposal. It was more than 9 months ago.

A short proposal description can be viewed here.

I hope to post more job announcements soon!

Ā© 2011 TU Delft